Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501460

RESUMO

AlphaFold protein structure database (AlphaFold DB) archives a vast number of predicted models. We conducted systematic data mining against AlphaFold DB and discovered an uncharacterized P-loop NTPase family. The structure of the protein family was surprisingly novel, showing an atypical topology for P-loop NTPases, noticeable twofold symmetry, and two pairs of independent putative active sites. Our findings show that structural data mining is a powerful approach to identifying undiscovered protein families.


Assuntos
Nucleosídeo-Trifosfatase , Proteínas , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Proteínas/química , Domínio Catalítico , Proteínas AAA/metabolismo
2.
Biomolecules ; 12(10)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291554

RESUMO

The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.


Assuntos
Domínio AAA , Nucleosídeo-Trifosfatase , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Hidrólise , Nucleosídeos , Adenosina Trifosfatases/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA , RNA , Fosfatos/metabolismo , Proteínas AAA/metabolismo , Oxigênio/metabolismo
3.
Biomolecules ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36291556

RESUMO

To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.


Assuntos
Domínio AAA , Nucleosídeo-Trifosfatase , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Ácido Aspártico , Prótons , Nucleosídeos , Catálise , Água/metabolismo , Proteínas AAA/metabolismo , Fosfatos/metabolismo
4.
Protein Sci ; 31(12): e4463, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192822

RESUMO

Nat/Ivy is a diverse and ubiquitous CoA-binding evolutionary lineage that catalyzes acyltransferase reactions, primarily converting thioesters into amides. At the heart of the Nat/Ivy fold is a phosphate-binding loop that bears a striking resemblance to that of P-loop NTPases-both are extended, glycine-rich loops situated between a ß-strand and an α-helix. Nat/Ivy, therefore, represents an intriguing intersection between thioester chemistry, a putative primitive energy currency, and an ancient mode of phospho-ligand binding. Current evidence suggests that Nat/Ivy emerged independently of other cofactor-utilizing enzymes, and that the observed structural similarity-particularly of the cofactor binding site-is the product of shared constraints instead of shared ancestry. The reliance of Nat/Ivy on a ß-α-ß motif for CoA-binding highlights the extent to which this simple structural motif may have been a fundamental evolutionary "nucleus" around which modern cofactor-binding domains condensed, as has been suggested for HUP domains, Rossmanns, and P-loop NTPases. Finally, by dissecting the patterns of conserved interactions between Nat/Ivy families and CoA, the coevolution of the enzyme and the cofactor was analyzed. As with the Rossmann, it appears that the pyrophosphate moiety at the center of the cofactor predates the enzyme, suggesting that Nat/Ivy emerged sometime after the metabolite dephospho-CoA.


Assuntos
Coenzima A , Proteínas , Proteínas AAA/metabolismo , Sítios de Ligação , Coenzima A/metabolismo , Domínios Proteicos , Proteínas/metabolismo
5.
Elife ; 112022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550246

RESUMO

The mitochondrial AAA (ATPase Associated with diverse cellular Activities) protein ATAD1 (in humans; Msp1 in yeast) removes mislocalized membrane proteins, as well as stuck import substrates from the mitochondrial outer membrane, facilitating their re-insertion into their cognate organelles and maintaining mitochondria's protein import capacity. In doing so, it helps to maintain proteostasis in mitochondria. How ATAD1 tackles the energetic challenge to extract hydrophobic membrane proteins from the lipid bilayer and what structural features adapt ATAD1 for its particular function has remained a mystery. Previously, we determined the structure of Msp1 in complex with a peptide substrate (Wang et al., 2020). The structure showed that Msp1's mechanism follows the general principle established for AAA proteins while adopting several structural features that specialize it for its function. Among these features in Msp1 was the utilization of multiple aromatic amino acids to firmly grip the substrate in the central pore. However, it was not clear whether the aromatic nature of these amino acids were required, or if they could be functionally replaced by aliphatic amino acids. In this work, we determined the cryo-EM structures of the human ATAD1 in complex with a peptide substrate at near atomic resolution. The structures show that phylogenetically conserved structural elements adapt ATAD1 for its function while generally adopting a conserved mechanism shared by many AAA proteins. We developed a microscopy-based assay reporting on protein mislocalization, with which we directly assessed ATAD1's activity in live cells and showed that both aromatic amino acids in pore-loop 1 are required for ATAD1's function and cannot be substituted by aliphatic amino acids. A short α-helix at the C-terminus strongly facilitates ATAD1's oligomerization, a structural feature that distinguishes ATAD1 from its closely related proteins.


Assuntos
Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas AAA/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos , Aminoácidos Aromáticos , Humanos , Proteínas de Membrana/metabolismo , Proteína 1 de Superfície de Merozoito , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biochem Soc Trans ; 50(2): 895-906, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35356966

RESUMO

Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.


Assuntos
Proteínas AAA , Proteínas de Escherichia coli , Proteínas AAA/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares
7.
Comb Chem High Throughput Screen ; 25(13): 2180-2190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35232348

RESUMO

BACKGROUND: Fidgetin-like 1 (FIGNL1), a subfamily member of ATPases, is associated with diverse cellular activities (AAA proteins). FIGNL1 is involved in DNA repair. However, the latest study has indicated that FIGNL1 plays a crucial role in the occurrence and development of malignant tumors. METHODS: FIGNL1 expression was analyzed via Oncomine and GEPIA databases, and its prognostic potential was analyzed using OncoLnc, UALCAN, and GEPIA databases. Moreover, the promoter methylation of FIGNL1 was analyzed through the UALCAN database. FIGNL1-related gene network was found within STRING. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were investigated across WebGestalt. FIGNL1 correlation with cancer immune infiltrates was estimated using the Tumor Immune Estimation Resource (TIMER) database. RESULTS: We found that FIGNL1 is widely overexpressed in multiple human cancers, and its high expression was correlated with the poor prognosis of patients with kidney renal clear-cell carcinoma (KIRP), low-grade glioma (LGG) of brain and liver hepatocellular carcinoma (LIHC). Additionally, the promoter methylation level of FIGNL1 showed a statistical significance between normal and primary tissues in KIRP and LGG via the UALCAN (P < 0.0001). FIGNL1 expression was highly correlated with the infiltrating levels of CD8+ T and CD4+ T cells, dendritic cells (DCs), macrophages, and neutrophils in LIHC. CONCLUSIONS: In this study, the correlation of FIGNL1 expression with the prognosis, promoter methylation, and immune infiltrates in KIRP, LGG, and LIHC was revealed. These findings suggested that FIGNL1 promised to be a prognostic biomarker for KIRP, LGG, and LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas AAA/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Biomarcadores , Humanos , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico
8.
Crit Rev Biochem Mol Biol ; 57(2): 156-187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34632886

RESUMO

ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.


Assuntos
Proteínas AAA , Trifosfato de Adenosina , Proteínas AAA/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo
9.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295875

RESUMO

This article is dedicated to the memory of Michael G. Rossmann. Dating back to the last universal common ancestor, P-loop NTPases and Rossmanns comprise the most ubiquitous and diverse enzyme lineages. Despite similarities in their overall architecture and phosphate binding motif, a lack of sequence identity and some fundamental structural differences currently designates them as independent emergences. We systematically searched for structure and sequence elements shared by both lineages. We detected homologous segments that span the first ßαß motif of both lineages, including the phosphate binding loop and a conserved aspartate at the tip of ß2. The latter ligates the catalytic metal in P-loop NTPases, while in Rossmanns it binds the nucleotide's ribose moiety. Tubulin, a Rossmann GTPase, demonstrates the potential of the ß2-Asp to take either one of these two roles. While convergence cannot be completely ruled out, we show that both lineages likely emerged from a common ßαß segment that comprises the core of these enzyme families to this very day.


Assuntos
Proteínas AAA/metabolismo , Proteínas AAA/química , Proteínas AAA/genética , Sítios de Ligação , Evolução Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
J Mol Biol ; 432(20): 5544-5564, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32750390

RESUMO

A hallmark of the catalytically essential Walker B motif of P-loop NTPases is the presence of an acidic residue (aspartate/glutamate) for efficient Mg2+ coordination. Although the Walker B motif has been identified in well-studied examples of P-loop NTPases, its identity is ambiguous in many families, for example, in the prokaryotic small Ras-like GTPase family of MglA. MglA, belonging to TRAFAC class of P-loop NTPases, possesses a threonine at the position equivalent to Walker B aspartate in eukaryotic Ras-like GTPases. To resolve the identity of the Walker B residue in MglA, we carried out a comprehensive analysis of Mg2+ coordination on P-loop NTPase structures. Atoms in the octahedral coordination of Mg2+ and their interactions comprise a network including water molecules, Walker A, Walker B and switch motifs of P-loop NTPases. Based on the conserved geometry of Mg2+ coordination, we confirm that a conserved aspartate functions as the Walker B residue of MglA, and validate it through mutagenesis and biochemical characterization. Location of the newly identified aspartate is spatially equivalent to the Walker B residue of the ASCE division of P-loop NTPases. Furthermore, similar to the allosteric regulation of the Walker B aspartate conformation in MglA, we identify protein families in which large conformational changes involving Walker B motif potentially function as allosteric regulators. The study unravels conserved features of Mg2+ coordination among divergent families of P-loop NTPases, especially between ancient Ras-like GTPases and ASCE family of ATPases. The conserved geometric features provide a foundation for design of nucleotide-hydrolyzing enzymes.


Assuntos
Domínio AAA/fisiologia , Proteínas AAA/metabolismo , GTP Fosfo-Hidrolases/química , Células Procarióticas/metabolismo , Proteínas ras/química , Proteínas AAA/genética , Evolução Molecular , GTP Fosfo-Hidrolases/genética , Modelos Moleculares , Nucleosídeo-Trifosfatase/metabolismo , Conformação Proteica , Proteínas ras/genética
12.
Biomolecules ; 10(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106553

RESUMO

Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.


Assuntos
Proteínas AAA/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas AAA/química , Proteínas AAA/genética , Trifosfato de Adenosina/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
Elife ; 92020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31999255

RESUMO

The AAA protein Msp1 extracts mislocalized tail-anchored membrane proteins and targets them for degradation, thus maintaining proper cell organization. How Msp1 selects its substrates and firmly engages them during the energetically unfavorable extraction process remains a mystery. To address this question, we solved cryo-EM structures of Msp1-substrate complexes at near-atomic resolution. Akin to other AAA proteins, Msp1 forms hexameric spirals that translocate substrates through a central pore. A singular hydrophobic substrate recruitment site is exposed at the spiral's seam, which we propose positions the substrate for entry into the pore. There, a tight web of aromatic amino acids grips the substrate in a sequence-promiscuous, hydrophobic milieu. Elements at the intersubunit interfaces coordinate ATP hydrolysis with the subunits' positions in the spiral. We present a comprehensive model of Msp1's mechanism, which follows general architectural principles established for other AAA proteins yet specializes Msp1 for its unique role in membrane protein extraction.


Assuntos
Proteínas AAA/química , Proteínas Fúngicas/química , Proteínas de Membrana/química , Leveduras/metabolismo , Proteínas AAA/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Conformação Proteica , Transporte Proteico
14.
Nat Rev Mol Cell Biol ; 21(1): 43-58, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754261

RESUMO

ATPases associated with diverse cellular activities (AAA+ proteins) are macromolecular machines that convert the chemical energy contained in ATP molecules into powerful mechanical forces to remodel a vast array of cellular substrates, including protein aggregates, macromolecular complexes and polymers. AAA+ proteins have key functionalities encompassing unfolding and disassembly of such substrates in different subcellular localizations and, hence, power a plethora of fundamental cellular processes, including protein quality control, cytoskeleton remodelling and membrane dynamics. Over the past 35 years, many of the key elements required for AAA+ activity have been identified through genetic, biochemical and structural analyses. However, how ATP powers substrate remodelling and whether a shared mechanism underlies the functional diversity of the AAA+ superfamily were uncertain. Advances in cryo-electron microscopy have enabled high-resolution structure determination of AAA+ proteins trapped in the act of processing substrates, revealing a conserved core mechanism of action. It has also become apparent that this common mechanistic principle is structurally adjusted to carry out a diverse array of biological functions. Here, we review how substrate-bound structures of AAA+ proteins have expanded our understanding of ATP-driven protein remodelling.


Assuntos
Proteínas AAA/química , Proteínas AAA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Humanos , Hidrólise , Modelos Moleculares , Conformação Proteica
15.
Curr Opin Chem Biol ; 50: 45-54, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913482

RESUMO

The AAA proteins are a family of enzymes that play key roles in diverse dynamic cellular processes, ranging from proteostasis to directional intracellular transport. Dysregulation of AAA proteins has been linked to several diseases, including cancer, suggesting a possible therapeutic role for inhibitors of these enzymes. In the past decade, new chemical probes have been developed for AAA proteins including p97, dynein, midasin, and ClpC1. In this review, we discuss how these compounds have been used to study the cellular functions and conformational dynamics of AAA proteins. We discuss future directions for inhibitor development and early efforts to utilize AAA protein inhibitors in the clinical setting.


Assuntos
Proteínas AAA/química , Proteínas AAA/fisiologia , Sondas Moleculares , Preparações Farmacêuticas , Proteínas AAA/metabolismo , Humanos , Organelas/metabolismo , Conformação Proteica
16.
Sci Rep ; 9(1): 712, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679587

RESUMO

Despite recent advances in understanding the biogenesis of iron-sulfur (Fe-S) proteins, most studies focused on aerobic bacteria as model organisms. Accordingly, multiple players have been proposed to participate in the Fe-S delivery step to apo-target proteins, but critical gaps exist in the knowledge of Fe-S proteins biogenesis in anaerobic organisms. Mrp/NBP35 ATP-binding proteins are a subclass of the soluble P-loop containing nucleoside triphosphate hydrolase superfamily (P-loop NTPase) known to bind and transfer Fe-S clusters in vitro. Here, we report investigations of a novel atypical two-domain Mrp/NBP35 ATP-binding protein named MrpORP associating a P-loop NTPase domain with a dinitrogenase iron-molybdenum cofactor biosynthesis domain (Di-Nase). Characterization of full length MrpORP, as well as of its two domains, showed that both domains bind Fe-S clusters. We provide in vitro evidence that the P-loop NTPase domain of the MrpORP can efficiently transfer its Fe-S cluster to apo-target proteins of the ORange Protein (ORP) complex, suggesting that this novel protein is involved in the maturation of these Fe-S proteins. Last, we showed for the first time, by fluorescence microscopy imaging a polar localization of a Mrp/NBP35 protein.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Proteínas AAA/genética , Proteínas AAA/metabolismo , Proteínas de Bactérias/genética , Citosol , Desulfovibrio/classificação , Desulfovibrio/genética , Proteínas de Ligação ao GTP/genética , Proteínas Ferro-Enxofre/genética , Molibdoferredoxina/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Ligação Proteica , Domínios Proteicos
17.
Cell Res ; 28(3): 296-306, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29451229

RESUMO

The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.


Assuntos
Proteínas AAA/metabolismo , Cálcio/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/enzimologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Canais de Cálcio/metabolismo , Humanos , Metaloendopeptidases/genética , Camundongos , Mitocôndrias/genética , Modelos Animais , Células de Purkinje/enzimologia , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...